Determinants of flammability in savanna grass species
نویسندگان
چکیده
Tropical grasses fuel the majority of fires on Earth. In fire-prone landscapes, enhanced flammability may be adaptive for grasses via the maintenance of an open canopy and an increase in spatiotemporal opportunities for recruitment and regeneration. In addition, by burning intensely but briefly, high flammability may protect resprouting buds from lethal temperatures. Despite these potential benefits of high flammability to fire-prone grasses, variation in flammability among grass species, and how trait differences underpin this variation, remains unknown.By burning leaves and plant parts, we experimentally determined how five plant traits (biomass quantity, biomass density, biomass moisture content, leaf surface-area-to-volume ratio and leaf effective heat of combustion) combined to determine the three components of flammability (ignitability, sustainability and combustibility) at the leaf and plant scales in 25 grass species of fire-prone South African grasslands at a time of peak fire occurrence. The influence of evolutionary history on flammability was assessed based on a phylogeny built here for the study species.Grass species differed significantly in all components of flammability. Accounting for evolutionary history helped to explain patterns in leaf-scale combustibility and sustainability. The five measured plant traits predicted components of flammability, particularly leaf ignitability and plant combustibility in which 70% and 58% of variation, respectively, could be explained by a combination of the traits. Total above-ground biomass was a key driver of combustibility and sustainability with high biomass species burning more intensely and for longer, and producing the highest predicted fire spread rates. Moisture content was the main influence on ignitability, where species with higher moisture contents took longer to ignite and once alight burnt at a slower rate. Biomass density, leaf surface-area-to-volume ratio and leaf effective heat of combustion were weaker predictors of flammability components. Synthesis. We demonstrate that grass flammability is predicted from easily measurable plant functional traits and is influenced by evolutionary history with some components showing phylogenetic signal. Grasses are not homogenous fuels to fire. Rather, species differ in functional traits that in turn demonstrably influence flammability. This diversity is consistent with the idea that flammability may be an adaptive trait for grasses of fire-prone ecosystems.
منابع مشابه
Understory plant communities and the functional distinction between savanna trees, forest trees, and pines.
Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural eq...
متن کاملHerbaceous Forage and Selection Patterns by Ungulates across Varying Herbivore Assemblages in a South African Savanna
Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African savanna in and adjacent to the Kruger National Park, South Africa. We compared mixed and mono-specif...
متن کاملClimate warming and precipitation redistribution modify tree-grass interactions and tree species establishment in a warm-temperate savanna.
Savanna tree-grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree-grass interactions wer...
متن کاملFunctional differences between dominant grasses drive divergent responses to large herbivore loss in mesic savanna grasslands of North America and South Africa
1. Grazing and fire are disturbances integral to the evolution and maintenance of savanna grasslands. Humans are altering or completely eliminating these disturbance regimes at a global scale, with important consequences for savanna ecosystem structure and function. It is unknown whether the alteration of these disturbance regimes will have similar effects on grass communities of savanna grassl...
متن کاملEffects of large herbivores on murid rodents in a South African savanna
Our study presents experimentally based results on how large herbivore species affect savanna vegetation and thus murid rodents in the Hluhluwe-iMfolozi Park in KwaZulu-Natal, South Africa. We permanently excluded groups of large herbivore guilds of various body sizes (ranging from white rhino to hares) from sixteen 40 × 40-m plots of vegetation by using different fence types. We determined gra...
متن کامل